

	[image:]

	Capstone Experience
IST 894

	Lab 9 – Cryptography
Scott Finlon

		

Page 1 of 4

Page 4 of 4

Table of Contents

1.	General Context	3
2.	Technical Context	4
3.	Solution	6
References	13

1. [bookmark: _Toc86961715]General Context
In this lab we utilize two different tools to do some symmetric and asymmetric encryption. Both scenarios can and are used in secure messaging. First, we use an application called ‘ccrypt’ which utilizes symmetric encryption to encrypt and decrypt some text files, this means that it uses the same key to both perform encryption and decryption functions. Then we use GNU Privacy Guard (GPG) which utilizes asymmetric encryption to sign, encrypt, and sign and encrypt some text files. Asymmetric key encryption means that every user has a private and a public key and you encrypt with one and decrypt with the other.
The lab states that ccrypt was created to replace bcrypt, when it was designed as a replacement for the standard Unix crypt utility, which is notorious for using a very weak encryption algorithm. Ccrypt is based on the Rijndael cipher, which is the U.S. government’s chosen candidate for the Advanced Encryption Standard (Ccrypt | Kali Linux Tools, n.d.). This cipher is believed to provide very strong security, as it utilizes 256-bit encryption which is still today considered unbreakable. 256-bit encryption means that the key that is used to encrypt the data is 256 bits long, what this means in plain English is it can have 2^256 unique combinations which is a 78-digit long number. Because of the sheer number of possibilities, and the state of current computing power, it’s not feasible to attempt to brute force any 256-bit key (ClickSSL, n.d.). One of the biggest weaknesses of symmetric encryption is because the same key is used to encrypt and decrypt a file, anyone who obtains the key can view the message. There is no way to ensure that only certain recipients can view it, and there is no way to
GPG is a free and open-source implementation of the OpenPGP standard. One of the largest benefits of utilizing asymmetric key encryption is that while symmetric key encryption can provide confidentiality, it can not provide integrity of knowing who sent a message and being able to prove that the message has not been tampered with. Asymmetric key encryption allows a user to digitally sign a message, which can then be verified by the receiver that it’s not been modified in any way and the signing process can happen with or without encryption. Due to this, GPG encryption is often utilized in email settings to prove that you are the one who sent an email, but also can encrypt it in a way that only the intended recipient can open it.
2. [bookmark: _Toc86961716]Technical Context
There are distinct advantages and disadvantages to both symmetric and asymmetric encryption. The best way to know which method to choose is to look at your individual use case. We can compare each process in key sharing, message security and validation, speed, and what happens if and when a key becomes compromised.
In order to share an encrypted message, the recipient needs to be able to decrypt it. Since symmetric key uses the same one key, it requires you to securely get the that key to everyone that you want to send messages to. Asymmetric encryption on the other hand has every user generate their own public and private key, so the total number of keys goes up exponentially for each person in the message change. Say for example you want to send a message to four people, with symmetric encryption you all only need one key but there is nothing that will alert you if someone else obtains the key and intercepts the message and changes it and re-encrypts it before it gets to the recipients. For that same four person message with asymmetric keys, you have five total people including the sender multiplied by two keys each for ten total keys that are utilized in the encrypting and decrypting that same message. Due to this, asymmetric encryption does not scale well, but the integrity and authentication that it can provide can make it worthwhile to use it.
As far as speed goes, symmetric encryption is faster than asymmetric, so symmetric is used more in streaming communications and asymmetric used in less time sensitive ones. Symmetric is faster because it sacrifices security for speed, while asymmetric sacrifices speed for security (Daniel, n.d.). Ccrypt uses a 256-bit key, where GPG can use key lengths of up to 4096 bits. The massive difference in key size is the largest factor in the speed differences.
Finally, what to do if a key becomes compromised. In asymmetric encryption, if you need to change or rotate a key there is no way to easily let everyone know that the key should no longer be used. You need to contact everyone and re-distribute a new key securely. GPG and other asymmetric encryption methods can utilize Public Key Infrastructure (PKI) to establish a Web of Trust (WoT) (Building Your Web of Trust, n.d.) which means that there are servers out there where people can post their public keys along with signatures from other peoples keys that is used to indicate that the key is trusted. Asymmetric keys are meant to be validated in person at key signing parties or other events, and you should only sign a key of someone that you personally know and have validated. Not doing these steps makes the WoT not reliable. Utilizing PKI makes key revocation much easier, you can just run a few simple commands to generate a revocation key and then upload it to a public key server (Revoking a GPG Key, n.d.). Once it’s been uploaded to a public server, other key infrastructure will see that that key is no longer valid and warn you not to trust it.

3. [bookmark: _Toc86961717]Solution
Since ccrypt isn’t installed on Kali, we need to run `sudo apt-get update` and then `sudo apt-get install ccrypt`. We then use `wget` to pull down a text file for utilization in this lab. We run `ccrypt --help` to see the available commands and options, and then run `ccrypt -e textfile1.txt` to encrypt textfile1.txt. This process creates a file called ‘textfile1.txt.cpt’ where the .cpt extension indicates that it’s cipher text and not plain text anymore. Finally, we run `ccrypt -d textfile1.txt.cpt` to decrypt the .cpt file back into plain text.
[image: A picture containing text, plaque

Description automatically generated]
Figure 1 - ccrypt help menu

[image:]
Figure 2 - Output of original plain text file

[image: A screenshot of a computer

Description automatically generated with medium confidence]
Figure 3 - Encrypt the file and then show cipher text
[image:]
Figure 4 - Decrypt file and show plain text output

To begin using GPG, we need to create a key pair. We run `gpg --gen-key` and add in our name and email address and it saves the keys to our private GPG keyring. We use ‘wget’ to pull down a second text file for use. We then run `gpg -e -r smf261@psu.edu textfile2.txt` where -e tells it to encrypt and -r is the recipient for the message. We then decrypt the file with `gpg -d textfile2.txt.gpg`. We then export our public key from the key ring by running `gpg --export -a smf261@psu.edu > public.key` so that we can share it either directly with other users or to be placed on a key server. If we are given another users public key, we import it to our key ring with `gpg --import public.key`, and we can then list the keys in our key ring with `gpg --list-keys`.
[image: Text

Description automatically generated]
Figure 5 - Generate a new public/private key pair
[image: Text

Description automatically generated]
Figure 6 - Read file, encrypt file, and show cipher text
[image: Text

Description automatically generated]
Figure 7 - Remove original text file and then decrypt cipher text

[image: Text

Description automatically generated]
Figure 8 - Export my public key from my key ring
[image: Text

Description automatically generated]
Figure 9 - Import a key to my key ring
[image: Text

Description automatically generated]
Figure 10 - List all keys in key ring
We digitally sign a file with `gpg --sign textfile2.txt` which signs the file and them compresses it and creates a binary file called ‘textfile2.txt.gpg’. The signature is validated with `gpg --verify textfile2.txt.gpg`. We can make a clear text signature with `gpg --clear-sign textfile2.txt` which signs the file but doesn’t otherwise modify the file and creates a plain text file and signature called ‘textfile2.txt.asc’ which can be verified in the same way `gpg --verify textfile2.txt.asc`. There is a third method for signing a document that creates a detached signature, where both the document and the detached signature are needed to verify that the signature integrity is in tact, this is done with `gpg --detach-sign textfile2.txt` which creates the detached file in ‘textfile2.txt.sig’.
[image: Text

Description automatically generated]
Figure 11 - GPG basic digital signature
[image: Text

Description automatically generated]
Figure 12 - GPG clear-signed signature
[image: Text

Description automatically generated]
Figure 13 - GPG detached signature
	Finally, we can go to a key server and search for my last name ‘finlon’ and find various GPG keys that I’ve used since 2010. They have number keys, subkeys, and signatures that create a Web of Trust with my coworkers and colleagues.
[image: A screenshot of a computer

Description automatically generated with low confidence]
Figure 14 - GPG key with subkeys for different email address with signatures
[image: Graphical user interface

Description automatically generated]
Figure 15 - GPG key on key server with signatures and signed image

[bookmark: _Toc86961718]References
Building your web of trust. (n.d.). Retrieved November 4, 2021, from https://www.gnupg.org/gph/en/manual/x547.html
Ccrypt | Kali Linux Tools. (n.d.). Kali Linux. Retrieved November 4, 2021, from https://www.kali.org/tools/ccrypt/
ClickSSL. (n.d.). 256 Bit Encryption: Is AES-256 Bit Encryption Safe in Modern Times? ClickSSL Blog - Information about SSL Certificates & Infosec. Retrieved November 4, 2021, from https://www.clickssl.net/blog/256-bit-encryption
Daniel, B. (n.d.). Symmetric vs. Asymmetric Encryption: What’s the Difference? Retrieved November 4, 2021, from https://www.trentonsystems.com/blog/symmetric-vs-asymmetric-encryption
Peter Selinger: Ccrypt—Frequently Asked Questions. (n.d.). Retrieved November 4, 2021, from http://ccrypt.sourceforge.net/faq.html#sec
Project, T. P. of the G. (2021, October 13). The GNU Privacy Guard. The GnuPG Project. https://gnupg.org/
Revoking a GPG key: Hackdiary. (n.d.). Retrieved November 4, 2021, from https://www.hackdiary.com/2004/01/18/revoking-a-gpg-key/
Search results for “finlon.” (n.d.). Retrieved November 4, 2021, from https://keyserver.ubuntu.com/pks/lookup?search=finlon&fingerprint=on&op=index

Page 2 of 4

image2.png
studentaka

ccrypt --help

ccrypt 1.11. Secure encryption and decryption of files and streams.

Usage: ccrypt [mode] [options] [file.

ccencrypt [options] [file...]
ccdecrypt [options] [file...]

ccat [options] file.

Modes:
-e, --encrypt
-d, --decrypt
5 =
-x, --keychange

-u, --unixcrypt

options:

K, --key key
keyfile file
prompt prompt
suffix .suf

e, =

prompt2 prompt
tinid

brave

keyref file
recursive
rec-symlinks
synlinks

-T, --tmpfiles

encrypt
decrypt

cat; decrypt files to stdout
change key

decrypt old unix crypt files

print this help message and exit

print version info and exit

print license info and exit

print progress information to stderr

Tun quietly; suppress warnings

overwrite existing files without asking

allow decryption with non-matching key

read keyword from environment variable (unsafe)
give keyword on command line (unsafe)

read keyword(s) as first line(s) from file

use this prompt instead of default

use suffix .suf instead of default .cpt

refuse to encrypt files which already have suffix
as -E for second keyword (for keychange mode)
as -K for second keyword (for keychange mode)
as -P for second keyword (for keychange mode)
prompt twice for encryption keys (default)
prompt only once for encryption keys
encryption key must match this encrypted file
recurse through directories

follow synbolic links as subdirectories
dereference symbolic links

use temporary files instead of overwriting (unsafe)
end of options, filenames follow

image3.png
studentiialin-§ cat textfilel.txt
This is a sample textfile for encryption/decryption.
You can create text file locally on your Linux system using a text editor such as Gedit or Leafpad, depending on what is installed on your system.

image4.png
$ ccrypt -e textfilel.txt
Enter encryption key:
Enter encryption key: (repeat)
$ cat textfilel.txt.cpt
@t _. K] . DR GEKKFCE Sl ruds " /5< ol GBo-3-e

GFesd’ }RoweRt SLS> Uy RE}-N

Rh G) NAEF | e & <2 & PSP

@evieer oo s] U-1ve

image5.png
“tudentiielii-$ cerypt -d textfilel.txt.cpt

Enter decryption key:

studentpkali:~$ cat textfilel.txt

This is a sample textfile for encryption/decryption.

You can create text file locally on your Linux system using a text editor such as Gedit or Leafpad, depending on what is installed on your system.

image6.png
“tudentiialii-$ gpg --gen-key

gpg (GnuPG) 2.2.20; Copyright (C) 2020 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Note: Use "gpg --full-generate-key” for a full featured key generation dialog.
GNUPG needs to construct a user ID to identify your key.

Real name: Scott Finlon
Email address: smf261apsu.edu
You selected this USER-ID:
"Scott Finlon <smf261apsu.edu>"

Change (N)ame, (E)mail, or (0)kay/(Q)uit? o

Ve need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

Ve need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.

gpg: /home/student/.gnupg/trustdb.gpg: trustdb created

gpg: key 13B52DB429F89AOF marked as ultimately trusted

directory '/home/student/.gnupg/openpgp-revocs.d’ created

€pg: revocation certificate stored as '/home/student/.gnupg/openpgp-revocs. d/3D9174E017591D676F6765CD13B52DB429F8IAOF . rev”
public and secret key created and signed.

pub rsa3072 2021-11-04 [SC] [expires: 2023-11-04]
3D9174E017591D676F6765CD13B52DB429F8IAOF

uid Scott Finlon <smf261apsu.edu>

sub rsa3072 2021-11-04 [E] [expires: 2023-11-04]

image7.png
studentiialin-$ cat textfile2.txt
This is a second textfile for testing asymmetric encryption.

“ludentiialii-$ gpg -e -r smf261@psu.edu textfile2.txt
gpg: checking the trustdb
gpg: marginals needed: 3 completes needed: 1 trust model: pgp
gpg: depth: @ valid: 1 signed: @ trust: 0-, og, on, om, of, 1u
gpg: next trustdb check due at 2023-11-04
studentpkali:~$ cat textfile2.txt
textfile2.txt textfile2.txt.gpg
“tudentiolii-$ cat textfile2.txt.gpg
ARy R ©

R <2
" 6 O 1 AR & T
“@ GAEN DGR T 0B G+ UPUIUKL G009 GBdaded

12 G100 G0 Gx N Y -6+ POX[Rr=aB' {Ge[TeV o0’ KGR} 0 éphUo

y

RO G951 9 K Gk o 6O,) U GO} GORRN T $ G0\ G € D) eV G W ; SARAD Ohn KB €Y) 0. Gaw > ©, €A €6 €l XAV B &t or DL
USK Kz €y 9 €666k 26+ 7§ |oBoMbunG @)" @ el el {

HW @GRl C 62 6, OE = 4 €f G GORRNH2TK e <~0' 2+~ -5]

image8.png
studentikali:~§ rm textfile2.txt

“tudentiialii-$ gpg -d textfile2.txt.gpg

gpg: encrypted with 3072-bit RSA key, ID ACBA962FE33206B4, created 2021-11-04
"Scott Finlon <smf261apsu.edu>"

This is a second textfile for testing asymmetric encryption.

image9.png
“tudentiialii-$ gpg --export -a smf261gpsu.edu > public.key
“tudentiialii-$ cat public.key
~BEGIN PGP PUBLIC KEY BLOCK-----

'MQGNBGGDStYBDACNCOG6MEV31TDR2LZwLgV5kup34Kj41AuUihFysOThSiATL6XK4
TK4ILTQRRSECWJQC6SX2IFRBFI3X2WhYSHF64AVY7 4258y TABHST50XHY ISK6+0M
‘aHy9Z8ZjpSujVECTXVSRNZEDSKN3VKaX0XaWAa1YAwuFOdLL10Skmh/7v T3Vt
tRT275A7cLUTOUMKZtCgprDIQVKZCa2E jXVemX/C2VoVM1 tHfplq30dk FuAcVKFy
MUIONTOIMBCde+CktV2m9+qLz6CeLqTi1ykT0+R/cFduUqjCyTToeqATOHCPHAS
LxdizdsqMQI9CLEFARNS702wf LMekk/07HF cDKMdUnBeCv0ZKnzQHF jvS8SNNO
02X5kBn9aHScnoutQks/ezPhuky7 kXexLohtymugr4GmgjABOINIqoCyNwBCOGH
ebD5ZeUP4X/cMyNNVIROMG5ST1A91Y7M6h7A05q)JABEWT 1 15pMEBOZAH7 S4X3LE
KiL2yh+pfiAQs/UAEQEAADQAU2NVAHQERMLUbGIUTDXZbUYYN FACHNLNVKAT6I
AdQEEWEKADAWIQQIKXTEF1kdZ29nZCOTtS20KF 1aDWUCYYNK1TbAWUIABINAAUL
CQgHAYVCEKICWTEFEIDAQTAQTXGAAKCRAT t520KF1aDwjXDACRBYOFMSFTOCRS
E1/VUCOVXVtZUNb9Zu1AUB818+pF4h0j tLALDVXTaTX L LhFeKecpXvuoym23RPLr
MQA4XNA5U9INB13HqgC tDOF3i t je fiigodBDIELpTYVHRKN6CyUU/CI+u+0703FUSHE
33fxyfn/21CQ52CY71UQByuyiIk0536Z0zbl feK57gr8oWLad+ENmED1rYLF1U0
MSOptXL5tM/h4g2pYSnTiy jc47oVKwOuXf FPGIS4BI3VNYVREIDRD1Z2mpZy0+Ug
heA32FghL7V8JGY5GDQET2CSa0CaNgiAgsXyud1LpLXnHKOZE FOLKTQHTPei4TVZ
NQIOKiU2Rmk2J7ESmOKOXHRXVUVGKVFSZpfSTtGSMIVRXTPBOGVAO4BZuMP4h B
acNrol/GIu1jihXK3M0jv+0k+xurFWgI7POb3 FPHIOVVIENh+ezpKab4GOZDQET
mPiXnLOGKPBCBQVYrXLZ8tOyRFX0009HWHOA FED+CBATKV5hOCSAYOEYYNK1EEM
AL9EbFPILBFC7A2F3ADKBVY-+07VNn+TmSMIKWCF+73Cq5FOBLBRYIEUPKYWRUN
FFPLhY/YMZ60V23W/Cw1SgnapvesyYILwuThkVenwb6anMOnyeRmLY2HI6C3/24
TTMjUSEERGNKPWGPJeYpOBUCXESX0f JLzboFoce9PdGsVxI2SH7WNLV6K k+t/oH
G4fmesxUIzpCnIyZHYWZCbX1evmAiNOLEBYFGGLN9qGUNto7DtchCBpdozYQ3izN
W62m1/c7PCNDUUA7POF4hmtoibFivBGUEf JwMpGHiIZEKZtP/hiDgPW1SWUAB13
LawVhVaUlibuDPSU6ViMIyDDSOZiWIMbVIq/H+iwBJAMDUXRA1 FYJWVhgLPBhqr
'YBHOMGWAGF 45121 9DA] eWaZHIbPOMHA20WZC4S sPbKwkCO/ JhnUeVFSTIHAGIZES
1290AbleUefwSt4uid0gQB/hj9gjONFLD/GG8ZkBO+spk6oR+GNKLLN1L1iKy2X7
DQARAQAB1QG8BBEBCEAMF i EEPZFO4BAZHWAVZ2XNE7Ut tCn4mgBFANGDSTYCGUMF
CQPCZWAACEKQE7Ut tCnémg/6Ewy+PXPROWAIL+XRGSYcep8eFy FnuPSDDIENB7Js
€qgF85GQpOE/PkKVV3V8LOXSN6T23mZUa7qrutbLRj3BMVVS CGBEGHDMIMTAKGAS
CbtXrKTqN+thOb6m+080ok/+/93d/RFKGETPTZXFFIYCTRSUUOb Jenws fm4tHTYYH
+PMUeV2/V3YZqKqSFucdZ1akt LP86UN8Y0d43uj065YyVdrtNDin7dL100kyupsq
NJ/WHPD554gtKT412+boHiXtFM2dPEG]So+F5R8cku4Gyuo/4F JBVALNTZtKpr
RiR3w+es/URVASCEmVpusUSYWNKCE1LLhObiVRMUPBNZ +eVPZ5sW98adSAYOTXDF
0CU/kvtgcwREFgbRe fTqdyQyeKYLKQCh321D2UtnAW+NFhXHGHEEEXTBAOEPZX
W+Ki19QHaOh101ewCpY/MiX9F5r/qC6XxQCDIBISTI0Zt J3XVaK5ykWtGAIAZRTCp
WDZZ707kZxA3UhbfozzcDwihBSfy

image10.png
“tudentiializ-$ gpg --import public.key

gpg: key 13B52DB420F89AOF: "Scott Finlon <smf261apsu.edu>” not changed
gpg: Total number processed: 1

epg: " unchanged: 1

image11.png
studentakali:~$ gpg --list-keys
/home/student/ . gnupg/pubring. kbx

pub rsa3072 2021-11-04 [SC] [expires: 2023-11-04]
3D9174E017591D676F6765CD13B52DB429F89A0F

uid [ultimate] Scott Finlon <smf261gpsu.edu>

sub rsa3072 2021-11-04 [E] [expires: 2023-11-04]

“udentiieli-$ gpg --sign-key 3D9174E@17591D676F6765CD13B52DB429FBIA0F

sec rsa3072/13B52DB429F89A0F
created: 2021-11-04 expires: 2023-11-04 usage: SC
trust: ultimate validity: ultimate
ssb rsa3072/AC8A962FE33206B4
created: 2021-11-04 expires: 2023-11-04 usage: E
[ultimate] (1). Scott Finlon <smf261gpsu.edu>

"Scott Finlon <smf261apsu.edu>” was already signed by key 13B52DB429F89AF
Nothing to sign with key 13B52DB429F89A0F

Key not changed so no update needed.
studentgkaliz~$ [J

image12.png
Studentiialii-$ gpg --sign textfile2.txt
“tudentiialii-$ gpg --verify textfile2.txt.gpg

gpg: Signature made Thu Nov 4 03:08:48 2021 UTC

using RSA key 3D9174E017591D676F6765CD13B52DB429F89AQF
gpg: Good signature from "Scott Finlon <smf261gpsu.edu>” [ultimate]

image13.png
S cniiol-$ gpg --clear-sign textfile2.txt

Sloioiiooli-$ gpg --verify textfile2.txt.asc

gpg: Signature made Thu Nov 4 03:11:37 2021 UTC

gpg: using RSA key 3D9174E017591D676F6765CD13B52DB429F89A0F
gpg: Good signature from "Scott Finlon <smf261apsu.edu>* [ultimate]

gpg: WARNING: not a detached signature; file 'textfile2.txt' was NOT verified!

image14.png
~ontii~$ gpg --detach-sign textfile2.txt
S oi-$ gpg --verify textfile2.txt.sig
gpg: assuming signed data in 'textfile2.txt
gpg: Signature made Thu Nov 4 03:12:25 2021 UTC

gpg: using RSA key 3D9174E017591D676F6765CD13B52DB429F89A0F
Good signature from "Scott Finlon <snf261apsu.edu>" [ultimate]

image15.png
uid
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig

uid
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig

Scott Finlon (personal) <finlon@gmail.com>

sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig

Scott Finlon <finlons2@scranton.edu>

sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig

cScc14db1b99281
cScc14db1b99281¢
cScc14db1b99281¢
cScc14db1b99281¢
cScc14db1b99281¢
cScc14db1b99281¢
2576603b07c43bE3
9710b89bcasTad7c
9710b89bcasTad7c
9710b89bcasTad7c
9710b89bcasTad7c
9710b89bcasTad7c
433e1b5£09938921
3478£10573320da
bbbbac1073334268
75229be86b786ac0

cScc14db1b99281¢
cScc14db1b99281¢
cScc14db1b99281¢
cScc14db1b99281¢
cScc14db1b99281¢
cScc14db1b99281¢
cScc14db1b99281¢
d932£38ec56bdbec
4e23cabBeB0ds£7E
£463ba9500515£1¢
61174c250371c12a
b332bEE£Ebab092e
0b136£13b0b77180
8813£1684£4c9ed3
1680£9470dabl4cT
9548bbded653£755
£dfb9cacE5£65b32
dcalb9d16adc9364

2015-11-16T15:56:062
2013-04-12714:08:182
2013-04-12714:06:262
2012-05-25712:49:372
2011-08-16T13:50:
2011-04-09717:49
2012-05-21717:30
2012-05-31710:46:
2012-06-13719:10
2012-06-27107:13
2012-07-10T19:12:
2012-07-24707:13
2013-04-17701:49
2013-04-26T16:03:
2013-04-30T13:18:
2015-11-16715:59:

2013-04-12714:08:
2013-04-12714:06.
2012-05-30715:06:
2012-05-25T12:49
2011-08-16T13:50
2010-11-30717:13:
2010-10-21719:10
2010-12-17714:03
2011-04-06T13:19:
2011-04-06T14:28
2011-04-07702:00.
2011-04-07702:36:002
2011-04-07703:54:162
2011-04-08T19:15:492
2011-04-08T19:57:542
2011-04-09702:43:042
2011-04-09718:54:522
2011-04-09723:47:292

2015-10-20119:10:512

2012-06-14710:46:332
2012-06-27119:10:272
2012-07-11707:13:012
2012-07-24119:12:292
2012-08-07707:13:492
2017-04-17701:49:412

2015-10-20119:10:512
2015-10-20119:10:512

[selfsig)
[selfsig)
[selfsig)
[selfsig)
[selfsig)
[selfsig)
2576603b07c43b£3
9710b89bcas7ad7c
9710b89bcas7ad7c
9710b89bcas7ad7c
9710b89bcas7ad7c
9710b89bcas7ad7c
433e1b5£09938921
3478£10573320da
bbbbic1073334268
75229bc86b786ac0

[selfsig)
[selfsig)
[selfsig)
[selfsig)
[selfsig)
[selfsig)
[selfsig)
d932£38ec56bdbee
4e23cabBeB0dsE7E
£463ba9500515£1¢
61174c250371c12a
b332b££EEbabO92C
0b136£13b0b77180
8813£1684£4c9ed3
1bB0£9470dablécT
9548bbded653£755
£dfb9cacE5£65b32
dcalb9416adc9Ied

image16.png
<« > cC

uid
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig

uat

keyserver.ubuntu.com,

Scott Finlon (Indiana address) <sfinlondiu.edu>

sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig
sig

75229bc86b786ac0
cScc14db1b99281¢
c0e5244a55ca2b78
c3eb6led0abs679e
070e05e5ab475£01
8£ab46044417db10
b2£aBe£7799acds
e1b3712e5£aba690
5a8044235abd602¢
Bdd3be3a50c93£68
866£0d5573498204
c1158£ab632e5272
46617c26033bbace
BaSade344d3zaad2
47ec15460650d047
b£17d34ce704b30E
1fc2a62£161a3c23
7d964d3361142act
62a7d8£1£2b5120d
4eb202d7824dd0de
bf201e0a813aeddl
011807d£90e279£2
a0bl40e451fcc243
04c£95db70773e6£

2015-11-16T15:58:082

2015-11-16T15:59:552

2016-02-08720:39:532

2016-02-08720:49:352

2016-02-09703:31:102

2016-02-10721:35:172

2016-02-11715:56:062

2016-02-16T18:55:132

2016-04-22712:58:382

2016-04-25T10:59:372

2016-04-25T13:37:562

2016-04-26715:27:242

2016-04-26T17:34:512

2016-04-26720:55:292

2016-05-03719:31:022

2016-05-04703:07:592

2016-05-12701:00:182

2016-05-19720:48:552

2017-05-05T16:02:522

2017-05-08T13:32:302

2017-05-08T15:44:352

2017-05-09706:15: 482

2017-05-31723:01:102

2018-04-20720:23:472 2021-04-10720:23:472

[selfsig)
cSec14db1b99281£
cOes5244a55ca2b78
c3eb6led0a6s679e
070e09e5ab475£01
8£ab46044417db10
b2faBief7799acds
e1b3712e5£aba690
5a8044a35abd602c
8dd3be3a50c93£68
866£0d5573498204
c1158£ab632e5272
46617c26033bbace
Basade34adizaad2
47ec15460650d047
b£17d34ce704b30£
1fc2a62£161a3c23
7d964d3361142act
62a7d8£1£2b5120d
4eb202d7824dd0de
b£201e0a813aedd1
011807d£90e279£2
a0b140e451£cc243

04c£99db70773e6£

image1.png
‘- PennState
4 College of Information

Sciences and Technology

