

	[image:]

	Capstone Experience
IST 894

	Lab 4 – Firewall Configuration and Intrusion Detection

		

Page 1 of 4

Page 4 of 4

Table of Contents

1.	General Context	3
2.	Technical Context	4
3.	Solution	5
References	11

1. [bookmark: _Toc84110058]General Context
Network security is a broad term that covers a multitude of technologies, devices, and processes. In it’s simplest term, it is a set of rules and configurations designed to protect the confidentiality, integrity, and availability of computer networks and data using both hardware and software technologies (What Is Network Security?, 2018). Two of the most important components of network security are firewalls, and intrusion detection systems. Both of these components come in various different shapes, sizes, configurations, and types.
Firewalls can be hardware appliances or software that is built into an operation system. There are several different types of firewalls, but the two most common are stateless, also called a packet filtering firewall, and stateful inspection. The main difference between stateful and stateless firewalls is that stateful firewalls maintain a state table that tracks all active connections between two end points, because it knows the source and destination IP’s and ports you only have to put a rule in once and the firewall is smart enough to allow a connection one way, and then allow the return traffic back through the other way. Stateless firewalls don’t care if a connection is active or in progress or not, it will compare each packet that passes through until the first rule matches and that is the action it will take, but because of this you have to put mirrored rules on opposite interfaces to allow traffic in and traffic out.
Intrusion detection systems (IDS) can also be hardware appliances or software packages that run on a server. There are Network IDS (NIDS) that monitor all traffic on a network, and there are Host IDS (HIDS) that run locally on a computer or server and monitor traffic locally on that system. IDSs can be signature based, anomaly based, or a hybrid of the two. Signature based IDS allow you to put in various known traffic patterns that items of interest are known to do, so you can only detect items that you already know exist, where anomaly based systems create a baseline of your network traffic and look for things that don’t match regular patterns.
In this lab we take a look at Snort, which is a signature-based NIDS. We look at some of the signature rules and patterns to see how they are written, and then inspect a packet capture to see how it actually works. Then we work with a stateful Linux host-based firewall called iptables.
2. [bookmark: _Toc84110059]Technical Context
Snort is a signature-based network intrusion detection system (NIDS) that was created in 1998 by Martin Roesch. It was developed and managed by a company called Sourcefire until 2013 when Cisco acquired them. It’s actively developed and still widely used and highly relevant 23 years later. There are several different security company that actively develop signatures for Snort, some are open source and some are paid commercial products. The firewall that we use in this lab was also initially released in 1998, it’s called iptables and it’s the default host firewall on many Linux distributions.
We take a closer look at a signature with Snort ID number (SID) 648 (Snort - Rule Docs - Sid 1-648, n.d.) which watches network conversations for a pattern of NOP which is a machine language instruction to instruct the computer to do nothing, a lot of attackers use NOPs in buffer overflow attempts so this signature could be useful, but a lot of binary files use NOPs for timing purposes, to force memory alignment, to prevent hazards, or as a place-holder to be replaced by an active instruction at a later time to name a few so this signature might be useful, but it can also be quite noisy and fire on a lot of false positives (“NOP (Code),” 2021). Snort is able to replay packet captures (PCAP) against various different signatures to look for different things in different ways. We run an old PCAP against the base Snort ruleset and it generated over 27,000 different signature matches, some of these were relevant and important but many of them were false positives or just noise. This demonstrates the need to properly ‘tune’ an IDS for your network, meaning you know certain traffic types or patterns that are common and innocuous for your network so you don’t need to generate an alert when you see it.
When using a stateful inspection firewall, you have the ability to tell inbound or outbound interfaces to handle traffic differently based on if it’s a new connection, or if it’s pre-established. This is helpful for if you want to allow traffic one way, like HTTP(S) out, but you don’t want to allow it back in unless it’s an established connection that was created internally. This is especially important to stop attacks like reverse shells that otherwise would try to send specially crafted packets on specific, commonly used ports in an effort to bypass the firewall and gain access to a network that they otherwise would be prevented from doing.
3. [bookmark: _Toc84110060]Solution
We start this lab by taking a look at all of the various Snort rule files, as shown in Figure 1, that are available on our virtual machine. Specifically, we read the ‘shellcode.rules’ file to find the Snort ID number 648 which, as shown in Figure 2, has both a TCP and a UDP signature but are otherwise identical. To break down what the rule means, lets look at what it actually says. First, ‘alert’ is the action that Snort will take, which is to generate an alert using the selected alert method, and then log the packet. Next is the protocol, TCP or UDP. Then, it’s the source network/port -> destination network/port which are configured variables or ‘any’. After that, ‘msg’ is the text of the alert that is generated. Then, ‘content’ the content keyword is one of the more important features of Snort. It allows the user to set rules that search for specific content in the packet payload and trigger response based on that data. Whenever a content option pattern match is performed, the Boyer-Moore pattern match function is called and the (rather computationally expensive) test is performed against the packet contents (3.5 Payload Detection Rule Options, n.d.). This content section utilizes the pipe ‘|’ character to surround the pattern which indicates that the data enclosed is binary data and represented as bytecode so this specific rule is looking for 14 NOPs. The last thing that we will discuss is the ‘depth’ keyword which allows the rule writer to specify how far into a packet Snort should search for the specified pattern. Depth modifies the previous `content' keyword in the rule. Depth of 128 tells Snort to only look for this specific pattern within the first 128 bytes of the payload. This rule, SID 648, can trigger often as false positives on a network where large binary files are transferred often as NOPs are commonly used for timing purposes, to force memory alignment, to prevent hazards, to occupy a branch delay slot, to render void an existing instruction such as a jump, as a target of an execute instruction, or as a place-holder to be replaced by active instructions later on in program development.
[image: Graphical user interface, text

Description automatically generated]
Figure 1
[image: Text

Description automatically generated]
Figure 2
	Next, we run Snort on a specific packet capture (PCAP) to inspect the traffic, the command is seen in Figure 3. We’re told that an attacker was trying to steal a specific file, and in Figure 4 you can see that the attacker was attempting to exploit a directory traversal vulnerability to access ‘cheddar.pdf’. However, while the attempted directory traversal was a legitimate alert, there were thousands of other alerts that were nothing but noise. Figure 5 shows some of these noisy alerts. The alerts here are false positives as it shows typical DHCP traffic. A client doesn’t know the address of a DHCP server so it floods a DHCP discover message to a broadcast IP address of 255.255.255.255 with a source port of 68 and a destination port of 67. Since the purpose of sending a DHCP discovery message is to obtain an IP address, the sending endpoint doesn’t have an IP address yet so it’s shown as 0.0.0.0. Since the time that this virtual machine was configured, this particular rule was deprecated and moved to the ‘deleted’ category (Snort - Rule Docs - Sid 1-527, n.d.). Rules are never totally removed from the ruleset, they are moved to the deleted category.

[image:]
Figure 3
[image: Table

Description automatically generated]
Figure 4
[image: A picture containing text

Description automatically generated]
Figure 5
	For the next part of the lab, we focus on iptables. We run `sudo iptables -L -n`, shown in Figure 6, which prints out the list of active firewall rules on the machine. The output is split into three chains: INPUT, FORWARD, and OUTPUT. Each chain has a default policy, which means what will happen if traffic doesn’t match any of the configured rules. In the Figure 6 example, INPUT has a default policy of DROP, while FORWARD, and OUTPUT both have a default policy of ACCEPT. On the INPUT chain, the first rule allows all ICMP traffic, the second rule allows all UDP traffic, the third rule allows TCP traffic on port 22 (SSH) for new and established connections, the forth rule allows TCP traffic on 3389 (RDP) for new and established connections, and finally the last rule allows all traffic from anywhere to anywhere on any protocol and any port. The OUTPUT chain accepts TCP traffic to ports 22 and 3389 in the first two rules, but only for established connections, however the third rule allows all traffic from anywhere to anywhere on any protocol and any port. The take-aways here are that Secure Shell (SSH) and Remote Desktop Protocol (RDP) are both remote access tools these rules are meant to allow outbound connections to be created or maintained, but only pre-existing connections are allowed back in. However, both chains have an allow any rule at the bottom which negates the need for any of the above accept rules. There is an error in these rules that doesn’t present itself because of the catch-all rule at the bottom, this error is on the OUTPUT chain and that 22 and 3389 should be set as the source ports not the destination ports. If the default policy on OUTPUT was DROP and the ACCEPT all wasn’t under it, inbound SSH connections wouldn’t be able to connect.
[image: A screenshot of a computer

Description automatically generated with medium confidence]
Figure 6
	In our last step for this lab, we create some basic rules in the INPUT and OUTPUT chains to allow outbound connections on ports 80 and 443 since most websites now require you to connect via HTTPS. Figure 7 shows the rules for each 80 and 443 that allow inbound TCP traffic on a source port of 80/443 for established connections, but will allow new and established connections outbound on destinate port of 80/443. Finally, since I don’t want to allow connections inbound to an internal HTTP(S) server, I put in rules to drop all traffic coming in with a destination port of 80/443 and outbound traffic with a source port of 80/443. Figure 8 shows these new rules in the active ruleset, Figure 9 shows that we are still able to access cnn.com, and Figure 10 shows the output of `iptables -vL -n` which is a verbose output which shows the traffic stats for each rule and shows that my new rules are being triggered.
[image: A screen shot of a computer

Description automatically generated with medium confidence]
Figure 7
[image: A picture containing diagram

Description automatically generated]
Figure 8
[image: Graphical user interface, text

Description automatically generated]
Figure 9
[image: Calendar

Description automatically generated]
Figure 10

[bookmark: _Toc84110061]References
3.5 Payload Detection Rule Options. (n.d.). Retrieved October 2, 2021, from http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node32.html
NOP (code). (2021). In Wikipedia. https://en.wikipedia.org/w/index.php?title=NOP_(code)&oldid=1045613275
Snort—Network Intrusion Detection & Prevention System. (n.d.). Retrieved October 2, 2021, from https://www.snort.org/rules_explanation
Snort—Rule Docs—Sid 1-527. (n.d.). Retrieved October 2, 2021, from https://www.snort.org/rule_docs/1-527
Snort—Rule Docs—Sid 1-648. (n.d.). Retrieved October 2, 2021, from https://www.snort.org/rule_docs/1-648
Understanding the Basic Operations of DHCP. (n.d.). Network Manias. Retrieved October 2, 2021, from https://www.netmanias.com/en/?m=view&id=techdocs&no=5998
What is Network Security? (2018, August 9). Forcepoint. https://www.forcepoint.com/cyber-edu/network-security

Page 2 of 4

image2.png
root@ip-10-1-47-238:~# ca /etc/snort/rules/
root@ip-10-1-47-238:/etc/snort/rules# 1s

attack-responses. rules
backdoor. rules
bad-traffic.rules

chat.rules
community-bot. rules
community-deleted. rules
community-dos. rules
community-exploit.rules
community-ftp.rules
community-game. rules
community-icmp. rules
community-imap. rules
community-inappropriate. rules
community-mail-client.rules
community-misc.rules

community-nntp. rules
community-oracle. rules
community-policy. rules
community-sip.rules
community-smtp. rules
community-sql-injection. rules
community-virus.rules
community-web-attacks. rules
community-web-cgi.rules
community-web-client. rules
community-web-dos. rules
community-web-iis.rules
community-web-misc.rules
community-web-php. rules

ddos. rules

root@ip-10-1-47-238:/etc/snort/rules# [l

deleted. rules
dns.rules

dos. rules
experimental. rules
exploit.rules
finger.rules
ftp.rules
icmp-info.rules
icmp. rules

imap. rules
info.rules
local.rules
misc.rules
multimedia. rules
mysql.rules

netbios. rules
nntp. rules
oracle.rules
other-ids.rules
p2p.rules
policy.rules
pop2. rules
pop3. rules
porn.rules
rpc.rules
rservices. rules
scan.rules
shellcode. rules
smtp.rules
snmp. rules

sql.rules
telnet.rules

tftp. rules
virus.rules
web-attacks. rules
web-cgi.rules
web-client. rules
web-coldfusion. rules
web-frontpage. rules
web-iis.rules
web-misc.rules
web-php. rules
x11.rules

image3.png
VLWVl &V & 7§ VeI y Ly vTVE Wy " VMEsevwy

student@ip-10-1-47-238:/etc/snort/rules$ cat shellcode.rules | grep 648

alert tcp $EXTERNAL NET $SHELLCODE PORTS -> $HOME NET any (msg:"SHELLCODE x86 NO
OP"; content:" |90 90 90 90 90 90 90 90 90 90 90 90 90 90|"; depth:128; reference
:arachnids, 181; classtype:shellcode-detect; sid:648; rev:7;)

alert udp $EXTERNAL NET $SHELLCODE PORTS -> $HOME NET any (msg:"SHELLCODE x86 NO
OP"; content:" |90 90 90 90 90 90 90 90 90 90 90 90 90 90|"; depth:128; reference
:arachnids, 181; classtype:shellcode-detect; sid:648; rev:7;)

image4.png
student@ip-10-1-47-238:—7lab2$ sudo 7usr/sbin/snort -c /etc/snort/snort.conf -r
./theft.pcap [

image5.png
Payload

Plain
Display

Yownload
of

Payload

Yownload

in pcap
format

length

000 47
010 69
020 2F
030 54
040 65
050 0D
060 6F
070 2E
080 3a

144

45
6C
2F
54
6E
oA
73
63
20

54
65
2F
50
74
41
74
6F
48

20
3D
63
2F
3A
63
3A
6D
65

2F
2E
68
31
20
63
20
0D
65

69
2E
65
2E
57
65
77
oA
70

6E
2F
64
30
67
70
77
43
2D

64
2E
64
0D
65
74
77
6F
41

65
2E
61
oA
74
3A
2E
6E
6C

78
2F
T2
55
2F
20
68
6E
69

2E
2F
2E
73
31
2A
62
65
76

70
2E
70
65
2E
2F
64
63
65

68
2E
64
T2
31
2A
61
74
0D

70
2F
66
2D
31
0D
69
69
oA

3F
2E
20
41
2E
oA
T2
6F
0D

66
2E
48
67
34
48
79
6E
oA

GET /index.php?f
ile=../..//../..
///cheddar.pdf H
TTP/1.0..User-Ag
ent: Wget/1.11.4
..Accept: */*..H
ost: www.hbdairy
.com..Connection
: Keep-Alive....

image6.png
D
#0-(5-24826)
#1-(5-24825)
#2-(5-24824)
#3-(5-22521)
#4-(5-18619)
#5-(5-18618)

< Signature >
[snort] BAD-TRAFFIC same SRC/DST
[snort] BAD-TRAFFIC same SRC/DST
[snort] BAD-TRAFFIC same SRC/DST
[snort] BAD-TRAFFIC same SRC/DST
[snort] BAD-TRAFFIC same SRC/DST
[snort] BAD-TRAFFIC same SRC/DST

< Timestamp >
2009-11-14 01:11:58
2009-11-14 01:11:58
2009-11-14 01:11:56
2009-11-13 22:01:20
2009-11-13 21:56:47
2009-11-13 21:56:47

< Source Address >
0.0.0.0:68
0.0.0.0:68
0.0.0.0:68
0.0.0.0:68
0.0.0.0:68
0.0.0.0:68

< Dest. Address >
255.255.255.255:67
255.255.255.255:67
255.255.255.255:67
255.255.255.255:67
255.255.255.255:67
255.255.255.255:67

< Layer 4 Proto >
UDP
UDP
UDP
UDP
UDP
UDP

image7.png
student@ip-10-1-47-238:~/1ab2$ sudo iptables -L -n
Chain INPUT (policy DROP)

target
ACCEPT
ACCEPT
ACCEPT
ACCEPT
ACCEPT

prot opt source

icmp -- 0.0.0.0/0
udp -- 0.0.0.0/0
tcp -- 0.0.0.0/0
tcp -- 0.0.0.0/0
all -- 0.0.0.0/0

Chain FORWARD (policy ACCEPT)

target

prot opt source

Chain OUTPUT (policy ACCEPT)

target
ACCEPT
ACCEPT
ACCEPT

student@ip-10-1-47-238:~/1ab2s [

prot opt source

tcp -- 0.0.0.0/0
tecp -- 0.0.0.0/0
all -- 0.0.0.0/0

tcp dpt:22 state NEW,ESTABLISHED
tcp dpt:3389 state NEW,ESTABLISHED

tcp dpt:22 state ESTABLISHED
tcp dpt:3389 state ESTABLISHED

image8.png
allow outbound web traffic on 80 and 443

iptables
iptables
iptables
iptables

-A INPUT -i ethO® -p tcp --sport 80 -m state --state ESTABLISHED -j ACCEPT
-A INPUT -i ethO® -p tcp --sport 443 -m state --state ESTABLISHED -j ACCEPT
-A OUTPUT -0 eth® -p tcp --dport 80 -m state --state NEW,ESTABLISHED -j ACCEPT
-A OUTPUT -o ethO® -p tcp --dport 443 -m state --state NEW,ESTABLISHED -j ACCEPT

drop all other traffic on 80 and 443

iptables
iptables
iptables
iptables

-A INPUT -i eth® -p tcp --dport 80 -j DROP

-A INPUT -i eth® -p tcp --dport 443 -j DROP
-A OUTPUT -0 eth® -p tcp --sport 80 -j DROP
-A OUTPUT -0 eth® -p tcp --sport 443 -j DROP

image9.png
student@ip-10-1-47-238:~/1ab2$ sudo iptables -L -n
Chain INPUT (policy DROP)

target
ACCEPT
ACCEPT
ACCEPT
ACCEPT
DROP

DROP

ACCEPT
ACCEPT

prot opt source

icmp -- 0.0.0.0/0
udp -- 0.0.0.0/0
tcp -- 0.0.0.0/0
tcp -- 0.0.0.0/0
tcp -- 0.0.0.0/0
tcp -- 0.0.0.0/0
tcp -- 0.0.0.0/0
all -- 0.0.0.0/0

Chain FORWARD (policy ACCEPT)

target

prot opt source

Chain OUTPUT (policy ACCEPT)

target
ACCEPT
ACCEPT
DROP

DROP

ACCEPT
ACCEPT

prot opt source

tcp -- 0.0.0.0/0
tecp -- 0.0.0.0/0
tecp -- 0.0.0.0/0
tecp -- 0.0.0.0/0
tecp -- 0.0.0.0/0
all -- 0.0.0.0/0

[cloloNoooNoNolel

e

S
0
0
0.
.0.
0
0
0
0

t

i
0
0
0
0.
0
0
0
0

nation
.0/0
.0/0
.0/0
0/0
.0/0
.0/0
.0/0
.0/0

destination

[cloNoNoNoNoNeN

e

S
0
0.
.0.
0
0
0

t

i
0
0
0.
0
0
0

nation
.0/0
.0/0
0/0
.0/0
.0/0
.0/0

tcp
tcp
tcp
tcp
tcp

tcp
tcp
tcp
tcp
tcp

spt
spt
dpt
dpt
dpt

dpt
dpt
spt
spt
dpt

:80 state ESTABLISHED

:443 state ESTABLISHED

180

1443

:3389 state NEW,ESTABLISHED

:80 state NEW,ESTABLISHED
:443 state NEW,ESTABLISHED
180

1443

:3389 state ESTABLISHED

image10.png
NN - Breaking News, Latest News and Videos - Mozilla Firefox

CNN - Breaking News, L= X | +

< C @ D& cnn.com

US World Politics Business Opinion Health Entertainment Style Travel Sports Videos < LIVE TV Edit

Total Recall Brian Laundrie search US Covid-19 = Reproductive rights marches ~ 'The Many Saints of

The suL
devas

Florida's new surgeon
general under scrutiny

Analysls
the Bider

How Bide

Smerc
5 things about Melania Trump Sihemaa
I revealed in Stephanie Exclusive
Grisham's new book the table:

HENNESSY/SOPR IMAGES/SHUTTERSROCK

image11.png
—on eI EsTE T

student@ip-10- 1 47 23

Chain
pkts
0]

26
871

18338

Dbty 4

g /1ab2$ sudo iptables -vL -n
INPUT (policy DROP 0 packets, 0 bytes)

bytes target prot opt in out source
0 ACCEPT icmp -- * * 0.0.0.0/0
3135 ACCEPT udp -- * * 0.0.0.0/0
771K ACCEPT tcp -- ethO * 0.0.0.0/0
0 ACCEPT tcp -- ethO * 0.0.0.0/0
0 DROP tcp -- ethO * 0.0.0.0/0
0 DROP tcp -- ethO * 0.0.0.0/0
505K ACCEPT tcp -- ethO * 0.0.0.0/0
73M ACCEPT all -- 1o * 0.0.0.0/0
FORWARD (policy ACCEPT 0 packets, 0 bytes)
bytes target prot opt in out source
OUTPUT (policy ACCEPT 6527 packets, 9894K bytes)
bytes target prot opt in out source
314K ACCEPT tecp -- * eth0 0.0.0.0/0
0 ACCEPT tecp -- * eth0 0.0.0.0/0
0 DROP tecp -- * eth0 0.0.0.0/0
0 DROP tecp -- * eth0 0.0.0.0/0
0 ACCEPT tecp -- * eth0 0.0.0.0/0
73M ACCEPT alt -- * lo 0.0.0.0/0

student@ip-10-1-47-238:~/1ab2s N

[cloloNoooNoNolel
[cloNoNoNoNoNolo]
[cloNoNoNoNoNolo]

estination

.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0

destination

[cloNoNoNoNoNeN

e

S
0.
0.
.0.
0.
0.
0.

t

i
0.
0.
0.
0.
0.
0.

nation
0/0
0/0
0/0
0/0
0/0
0/0

tcp
tcp
tcp
tcp
tcp

tcp
tcp
tcp
tcp
tcp

spt
spt
dpt
dpt
dpt

dpt
dpt
spt
spt
dpt

:80 state ESTABLISHED

:443 state ESTABLISHED

180

1443

:3389 state NEW,ESTABLISHED

:80 state NEW,ESTABLISHED
:443 state NEW,ESTABLISHED
180

1443

:3389 state ESTABLISHED

image1.png
‘- PennState
4 College of Information

Sciences and Technology

